AI-generated code
AI-generated
RUN AI-GENERATED code SECURELY in your APP
E2B is an open-source runtime for executing AI-generated code in secure cloud sandboxes. Made for agentic & AI use cases.
TRUSTED BY
LLM
[.500]
[.873]
[.542]
[.704]
[.285]
[.717]
[.598]
[.557]
[.232]
[.746]
[.873]
[.542]
[.704]
[.285]
[.717]
[.598]
[.557]
[.232]
[.746]
[.211]
[.013]
[.510]
[.718]
[.621]
[.223]
[.124]
[.801]
[.798]
[.117]️
[.013]
[.510]
[.718]
[.621]
[.223]
[.124]
[.801]
[.798]
[.117]️
[.817]
[.070]
[.353]
[.833]
[.477]
[.620]
[.070]
[.353]
[.833]
[.477]
[.620]
[.829]
[.195]
[.245]
[.891]
[.454]
[.145]
[.984]
[.634]
[.342]
[.746]
[.195]
[.245]
[.891]
[.454]
[.145]
[.984]
[.634]
[.342]
[.746]
[.330]
[.103]
[.742]
[.004]
[.165]
[.459]
[.597]
[.910]
[.072]
[.336]
[.103]
[.742]
[.004]
[.165]
[.459]
[.597]
[.910]
[.072]
[.336]
]·········[
]·········[
]·········[
]·········[
]·········[
E2B SANDBOX
RUNNING CODE…
]·····[
]·····[
]·····[
]·····[
]·····[
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
]·····[
]·····[
]·····[
]·····[
]·····[
[_______________]
[%%%%%__________]
[%%%%%%%%%%_____]
[%%%%%%%%%%%%%%%]
CPU: 8 × ▤ / RAM: 4 GB
]·········[
]·········[
]·········[
]·········[
]·········[
OUTPUT
8 – ––––– ––– ––––– ––– ––––– –––
7 – ––––– ––– @@@@@ ––– ––––– –––
6 – ––––– ––– @@@@@ ––– ––––– –––
5 – @@@@@ ––– @@@@@ ––– ––––– –––
4 – @@@@@ ––– @@@@@ ––– ––––– –––
3 – @@@@@ ––– @@@@@ ––– @@@@@ –––
2 – @@@@@ ––– @@@@@ ––– @@@@@ –––
1 – @@@@@ ––– @@@@@ ––– @@@@@ –––
–––––––––––––––––––––––––––––––––
A B C
7 – ––––– ––– @@@@@ ––– ––––– –––
6 – ––––– ––– @@@@@ ––– ––––– –––
5 – @@@@@ ––– @@@@@ ––– ––––– –––
4 – @@@@@ ––– @@@@@ ––– ––––– –––
3 – @@@@@ ––– @@@@@ ––– @@@@@ –––
2 – @@@@@ ––– @@@@@ ––– @@@@@ –––
1 – @@@@@ ––– @@@@@ ––– @@@@@ –––
–––––––––––––––––––––––––––––––––
A B C
✓ CHART-1
OUTPUT
______ ______ ______
❘ ❘_\ ❘ ❘_\ ❘ ❘_\
╔═══════╗ ╔═══════╗ ╔═══════╗
║ CSV ║ ║ TXT ║ ║ .JS ║
╚═══════╝ ╚═══════╝ ╚═══════╝
❘______❘ ❘______❘ ❘______❘
❘ ❘_\ ❘ ❘_\ ❘ ❘_\
╔═══════╗ ╔═══════╗ ╔═══════╗
║ CSV ║ ║ TXT ║ ║ .JS ║
╚═══════╝ ╚═══════╝ ╚═══════╝
❘______❘ ❘______❘ ❘______❘
✓ File
OUTPUT
╔ Email ══════════════╗
║ your@email.com ║
╚═════════════════════╝
╔ Pw ═════════════════╗
║ ******** ║
╚═════════════════════╝
╔═════════════════════╗
║ Sign In ║
╚═════════════════════╝
║ your@email.com ║
╚═════════════════════╝
╔ Pw ═════════════════╗
║ ******** ║
╚═════════════════════╝
╔═════════════════════╗
║ Sign In ║
╚═════════════════════╝
✓ UI
OUTPUT
NVDA @
$120.91 @
+32% @
@@@ @
@@@ @ @ @
@@ @ @ @
@@@@ @ @
@@@@ @@@
@
@
$120.91 @
+32% @
@@@ @
@@@ @ @ @
@@ @ @ @
@@@@ @ @
@@@@ @@@
@
@
✓ CHART-2
OUTPUT
1999 @@@@@@@@@@ │ │
1998 @@@ │ │
1997 @@@@@@@@@@@@@ │
1996 @@@@@@@ │ │
1995 @@@@@@@@@@@@@@@@ │
1994 @@@@@@@@@@@@@@@@@@@@@@@@@
1993 @@@@@ │ │
1992 @@@@@@@@@@ │ │
–––––––––––––––––––––––––––––––––
2 4 6
1998 @@@ │ │
1997 @@@@@@@@@@@@@ │
1996 @@@@@@@ │ │
1995 @@@@@@@@@@@@@@@@ │
1994 @@@@@@@@@@@@@@@@@@@@@@@@@
1993 @@@@@ │ │
1992 @@@@@@@@@@ │ │
–––––––––––––––––––––––––––––––––
2 4 6
✓ CHART-3
OUTPUT
/!\
Error: [$rootScope:inprog] $apply
already in progress
http://errors.angular.js.org/1.3
.15/$rootScope/inprog?p0=
%24apply
at angular.js:63
Error: [$rootScope:inprog] $apply
already in progress
http://errors.angular.js.org/1.3
.15/$rootScope/inprog?p0=
%24apply
at angular.js:63
☓ Error
OUTPUT
8 ––––│–––––––––│–––––––––│–––––@
7 ––––│–––––––––│–––@–––––│––––@–
6 ––––│–––––––––│––@–@–@@@@–––@––
5 ––––│–––––@@@–│–@–––@–––│@–@–@@
4 @@@@│–––@@–––@│@–––@–@––│–@–@––
3 ––––@@@@––@@@@@–––@–––@@│@@@–––
2 –––@│@@@@@––––│@@@––––––│––––––
1 –@@–│–––––––––│–––––––––│––––––
–––––––––––––––––––––––––––––––––
A B C
7 ––––│–––––––––│–––@–––––│––––@–
6 ––––│–––––––––│––@–@–@@@@–––@––
5 ––––│–––––@@@–│–@–––@–––│@–@–@@
4 @@@@│–––@@–––@│@–––@–@––│–@–@––
3 ––––@@@@––@@@@@–––@–––@@│@@@–––
2 –––@│@@@@@––––│@@@––––––│––––––
1 –@@–│–––––––––│–––––––––│––––––
–––––––––––––––––––––––––––––––––
A B C
✓ CHART-4
20K+
DEVELOPERS
250K+
MONTHLY DOWNLOADS
10M+
STARTED SANDBOXES
[
USE CASES
]
AI
Build for AI
Use Cases
From running short AI-generated code snippets, up to fully autonomous AI agents.
> HOVER (↓↓)
/EXPLORE
.CSV
_____
❘ ❘_\
❘ ❘_\
❘_____❘
AI Data Analysis
From running short AI-generated code snippets, up to fully autonomous AI agents.
@@@
@@@@@@
@@@@@@@@@
@@@@@@
@@@@@@@@@
AI Data Visualization
Run AI-generated code to render charts, plots, and visual outputs based on your data.
======
========
=== ===
<
========
=== ===
<
Coding Agents
Use sandbox to execute code, use I/O, access the internet, or start terminal commands.
╔ ═ ╗
╣
╚ ═
╣
╚ ═
Generative UI
Use sandbox as a code runtime for AI-generated apps. Supports any language and framework.
==╔═══╗==
==║ ✓ ║== ==╚═══╝==
==║ ✓ ║== ==╚═══╝==
Codegen Evals
Use sandboxes for your codegen gym for popular evals like swe-benchmark or internal evals.
NEW
Computer Use
Use Desktop Sandbox to provide secure virtual computers in cloud for your LLM.
[
GET STARTED
]
A FEW LINES
IN YOUR CODE
WITH A FEW LINES
+
+
+
+
+
+
1
2
3
4
5
6
7
8
9
10
11
12
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
2
3
4
5
6
7
8
9
10
11
12
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
// npm install @e2b/code-interpreter
import { Sandbox } from '@e2b/code-interpreter'
// Create a E2B Code Interpreter with JavaScript kernel
const sandbox = await Sandbox.create()
// Execute JavaScript cells
await sandbox.runCode('x = 1')
const execution = await sandbox.runCode('x+=1; x')
// Outputs 2
console.log(execution.text)
“~/index.ts”
1
2
3
4
5
6
7
8
9
10
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
2
3
4
5
6
7
8
9
10
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
# pip install e2b-code-interpreter
from e2b_code_interpreter import Sandbox
# Create a E2B Sandbox
with Sandbox() as sandbox:
# Run code
sandbox.run_code("x = 1")
execution = sandbox.run_code("x+=1; x")
print(execution.text) # outputs 2
“~/index.py”
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
// npm install ai @ai-sdk/openai zod @e2b/code-interpreter
import { openai } from '@ai-sdk/openai'
import { generateText } from 'ai'
import z from 'zod'
import { Sandbox } from '@e2b/code-interpreter'
// Create OpenAI client
const model = openai('gpt-4o')
const prompt = "Calculate how many r's are in the word 'strawberry'"
// Generate text with OpenAI
const { text } = await generateText({
model,
prompt,
tools: {
// Define a tool that runs code in a sandbox
codeInterpreter: {
description: 'Execute python code in a Jupyter notebook cell and return result',
parameters: z.object({
code: z.string().describe('The python code to execute in a single cell'),
}),
execute: async ({ code }) => {
// Create a sandbox, execute LLM-generated code, and return the result
const sandbox = await Sandbox.create()
const { text, results, logs, error } = await sandbox.runCode(code)
return results
},
},
},
// This is required to feed the tool call result back to the LLM
maxSteps: 2
})
console.log(text)
“~/aisdk_tools.ts”
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
~
~
~
~
~
~
~
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
~
~
~
~
~
~
~
# pip install openai e2b-code-interpreter
from openai import OpenAI
from e2b_code_interpreter import Sandbox
# Create OpenAI client
client = OpenAI()
system = "You are a helpful assistant that can execute python code in a Jupyter notebook. Only respond with the code to be executed and nothing else. Strip backticks in code blocks."
prompt = "Calculate how many r's are in the word 'strawberry'"
# Send messages to OpenAI API
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": system},
{"role": "user", "content": prompt}
]
)
# Extract the code from the response
code = response.choices[0].message.content
# Execute code in E2B Sandbox
if code:
with Sandbox() as sandbox:
execution = sandbox.run_code(code)
result = execution.text
print(result)
“~/oai.py”
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
~
~
~
~
~
~
~
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
~
~
~
~
~
~
~
# pip install anthropic e2b-code-interpreter
from anthropic import Anthropic
from e2b_code_interpreter import Sandbox
# Create Anthropic client
anthropic = Anthropic()
system_prompt = "You are a helpful assistant that can execute python code in a Jupyter notebook. Only respond with the code to be executed and nothing else. Strip backticks in code blocks."
prompt = "Calculate how many r's are in the word 'strawberry'"
# Send messages to Anthropic API
response = anthropic.messages.create(
model="claude-3-5-sonnet-20240620",
max_tokens=1024,
messages=[
{"role": "assistant", "content": system_prompt},
{"role": "user", "content": prompt}
]
)
# Extract code from response
code = response.content[0].text
# Execute code in E2B Sandbox
with Sandbox() as sandbox:
execution = sandbox.run_code(code)
result = execution.logs.stdout
print(result)
“~/anth.py”
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
~
~
~
~
~
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
~
~
~
~
~
# pip install mistralai e2b-code-interpreter
import os
from mistralai import Mistral
from e2b_code_interpreter import Sandbox
api_key = os.environ["MISTRAL_API_KEY"]
# Create Mistral client
client = Mistral(api_key=api_key)
system_prompt = "You are a helpful assistant that can execute python code in a Jupyter notebook. Only respond with the code to be executed and nothing else. Strip backticks in code blocks."
prompt = "Calculate how many r's are in the word 'strawberry'"
# Send the prompt to the model
response = client.chat.complete(
model="codestral-latest",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
]
)
# Extract the code from the response
code = response.choices[0].message.content
# Execute code in E2B Sandbox
with Sandbox() as sandbox:
execution = sandbox.run_code(code)
result = execution.text
print(result)
“~/mistral.py”
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
~
~
~
~
~
~
~
~
~
~
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
~
~
~
~
~
~
~
~
~
~
# pip install ollama
import ollama
from e2b_code_interpreter import Sandbox
# Send the prompt to the model
response = ollama.chat(model="llama3.2", messages=[
{
"role": "system",
"content": "You are a helpful assistant that can execute python code in a Jupyter notebook. Only respond with the code to be executed and nothing else. Strip backticks in code blocks."
},
{
"role": "user",
"content": "Calculate how many r's are in the word 'strawberry'"
}
])
# Extract the code from the response
code = response['message']['content']
# Execute code in E2B Sandbox
with Sandbox() as sandbox:
execution = sandbox.run_code(code)
result = execution.logs.stdout
print(result)
“~/llama.py”
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
~
~
~
~
~
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
~
~
~
~
~
# pip install langchain langchain-openai e2b-code-interpreter
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from e2b_code_interpreter import Sandbox
system_prompt = "You are a helpful assistant that can execute python code in a Jupyter notebook. Only respond with the code to be executed and nothing else. Strip backticks in code blocks."
prompt = "Calculate how many r's are in the word 'strawberry'"
# Create LangChain components
llm = ChatOpenAI(model="gpt-4o")
prompt_template = ChatPromptTemplate.from_messages([
("system", system_prompt),
("human", "{input}")
])
output_parser = StrOutputParser()
# Create the chain
chain = prompt_template | llm | output_parser
# Run the chain
code = chain.invoke({"input": prompt})
# Execute code in E2B Sandbox
with Sandbox() as sandbox:
execution = sandbox.run_code(code)
result = execution.text
print(result)
“~/lchain.py”
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
~
~
~
~
~
~
~
~
~
~
~
~
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
~
~
~
~
~
~
~
~
~
~
~
~
from llama_index.core.tools import FunctionTool
from llama_index.llms.openai import OpenAI
from llama_index.core.agent import ReActAgent
from e2b_code_interpreter import Sandbox
# Define the tool
def execute_python(code: str):
with Sandbox() as sandbox:
execution = sandbox.run_code(code)
return execution.text
e2b_interpreter_tool = FunctionTool.from_defaults(
name="execute_python",
description="Execute python code in a Jupyter notebook cell and return result",
fn=execute_python
)
# Initialize LLM
llm = OpenAI(model="gpt-4o")
# Initialize ReAct agent
agent = ReActAgent.from_tools([e2b_interpreter_tool], llm=llm, verbose=True)
agent.chat("Calculate how many r's are in the word 'strawberry'")
“~/llindex.py”
[
FEATURES
]
FEATURES
FEATURES FOR THE
llm-powered DEVELOPERs
We built E2B with the next generation of developers in mind — software engineering AI agents.
> MADE FOR AI
> DSCVR ALL (↓↓)
Works with any LLM
Use OpenAI, Llama, Anthropic, Mistral, or your
own custom models. E2B is LLM-agnostic
and compatible with any model.
own custom models. E2B is LLM-agnostic
and compatible with any model.
Run
... or just any other AI-generated code.
AI-generated Python, JavaScript, Ruby, or C++? Popular framework or custom library? If you can run it on a Linux box, you can run it in the E2B sandbox.
Control code execution context
inspect errors
install packages
interactive charts
Filesystem I/O
Features made for LLM
E2B features are made to turn your
LLM into a competent coder.
LLM into a competent coder.
tailor-made for ai
^
^ ^
^^^^^
^^ ^^
^^^
^ ^
^^^^^
^^ ^^
^^^
Secure & battle-tested
Sandboxes are powered by Firecracker microVM,
a VM made for running untrusted code.
a VM made for running untrusted code.
battle-tested
24H
[
SANDBOX RUNNING
]
Up to 24h long sessions
Run for a few seconds or several hours, each E2B
sandbox can run up to 24 hours.
sandbox can run up to 24 hours.
AVAILABLE IN PRO
Install any package or system library with
and more.
Completely customize the sandbox for your use case by creating a custom sandbox template or installing a package when the sandbox is running.
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
*
·
SOON
[
Cookbook
]
COOKBOOK
GET INSPIRed BY
OUR COOKBOOK
Production use cases & full-fledged apps.
HOVER (↓↓)
[
CUSTOMERS
]
COMPANIES
USED BY TOP
COMPANIES
From running short AI-generated code snippets, up to fully autonomous AI agents.
/print("
")
(↓↓)
“E2B has a great product that unlocked a new set of rich answers for our users. We love working with both the product and team behind it.”
— Denis Yarats, CTO
— Denis Yarats, CTO
“It took just one hour to integrate E2B end-to-end. The performance is excellent, and the support is on another level. Issues are resolved in minutes.”
— Maciej Donajski, CTO
— Maciej Donajski, CTO
“E2B allows us to quickly scale by providing a safe compute environment for our agents. We can focus on our product, instead of infrastructure.”
— Dillon Laird, founding ML engineer
— Dillon Laird, founding ML engineer
“E2B has revolutionized our agents' capabilities. This advanced alternative to OpenAI's Code Interpreter helps us focus on our unique product.”
— Kevin J. Scott, CTO/CIO
— Kevin J. Scott, CTO/CIO
Contact Us
(◔) GET REPLY IN 24H
Today
GET STARTED TODAY
E2B is an open-source runtime for executing AI-generated code in secure cloud sandboxes. Made for agentic & AI use cases.
/RUN CODE
>
>
>>
>
>>